

Welcome to SmartAgro’s documentation!

Contents:

	SmartAgro
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage

	Package Modules

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2020-09-03)

	0.1.1 (2020-10-12)

	0.2.0 (2020-10-26)

Indices and tables

	Index

	Module Index

	Search Page

SmartAgro

[image: _images/smartagro.svg]
 [https://pypi.python.org/pypi/smartagro][image: _images/SmartAgro.svg]
 [https://travis-ci.com/chris-kck/SmartAgro][image: Documentation Status]
 [https://smartagro.readthedocs.io/en/latest/?badge=latest][image: Python Language]
[image: Python Language]
Smart, Iot-enabled greenhouse monitoring and control API

	Free software: GNU General Public License v3

	Documentation: https://smartagro.readthedocs.io.

Features

	TODO

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install SmartAgro, run these command in your terminal:

$ sudo apt-install libgpiod2
$ pip3 install smartagro

This is the preferred method to install SmartAgro, as it will always install the most recent stable release.

If you don’t have pip3 [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for SmartAgro can be downloaded from the Github repo [https://github.com/chris-kck/smartagro].

You can either clone the public repository:

$ git clone git://github.com/chris-kck/smartagro

Or download the tarball [https://github.com/chris-kck/smartagro/tarball/master]:

$ curl -OJL https://github.com/chris-kck/smartagro/tarball/master

Once you have a copy of the source, you can install it with:

$ python3 setup.py install

Usage

To use SmartAgro in a project:

#Can be imported and implemented in different ways:
#import smatagro then use smartagro.smartagro.func1() or smartagro.utils.func2()
#from smartagro.smartagro import *
from smartagro import *, smart.SmartAgro(), smart.func1(), utils.func2()

Prefered and easy way to use SmartAgro in a project:

from smartagro import *
import time

utils.find_broker() #search for a broker within your network
utils.discover_i2c() #discover devices connected to your Pi

instatiate SmartAgro Object and conect to a broker. Optionally specify details
obj = smart.SmartAgro()

Print different sensor' data values
print(f"Moisture 0 output: {obj.read_sensor(0)} %")
print(f"Light 2 output: {obj.read_sensor(2)} %")
print(f"dht temperature and humidity: {obj.read_dht()}")

Activate an actuator directly with a pause then deactivate
obj.activate_actuator(15,1)
time.sleep(3)
obj.activate_actuator(15,0)

Print out all 4 sensors' current values and publish to broker
print(obj.read_all())

#cleanup and exit the program
utils.cleanup()
exit(0)

Package Modules

	
class smartagro.smart.SmartAgro

	Implemented After searching for a broker
Instantiates an object which has sensors added to it then configures a broker.
Sensors are attached added with corresponding topics
Sensor Data is published and Actuator can be activated

	
activate_actuator(gpio_pin, state)

	A function to activate or deactivate an actuator.

	Parameters

	
	gpio_pin (int) – GPIO pic of connected actuator.

	state (bool) – State whether it is on or Off

	
config_broker(broker='test.mosquitto.org', qos=0, port=1883, stream_schema='json')

	Function to configure a new broker to be published to.

	Parameters

	
	broker – The url or ip address of the broker.

	qos – quality of service determining how many times message is sent. 0,1,2

	port – broker port in use. default 1883, ssl 8883

	stream_schema – the data stream schema used. Default is json

	Returns

	mqtt client object

	
get_dht()

	A function to get readings from the single wire DHT11 device.

	Returns

	Temperature and Humidity Readings

	
static on_connect(client, userdata, flags, rc)

	The callback for when a connection is established with the server.

	Parameters

	
	client – Mqtt Client

	userdata – Authentication data

	flags – Connection indicators

	rc – status code of connection

	
static on_message(client, userdata, msg)

	The callback for when a PUBLISH message is received from the server.

	Parameters

	
	client – MQtt client

	userdata – data used for authenticated connections

	msg – received message topic and payload in bytes

	
read_all()

	A function to read all the values at once

	Returns

	A list of current moisture, light, temperature, humidity values

	
read_sensor(channel)

	Reads sensor, publishes topic to broker, adds to active sensors

	Parameters

	channel – ADC channel to be read.

	
remove_device(device)

	Function to remove device from published topics

	Parameters

	device (str) – Device Topic

Utilities Module. With several functions that are repeatedly used

	
smartagro.utils.cleanup()

	GPIO.cleanup() and exit(0) for a graceful exit.

	
smartagro.utils.discover_i2c()

	Scans address space and ports to discover connected I2C or SPI devices
uses os i2cdetect for the 1 I2C port and also scans two SPI ports

	
smartagro.utils.find_broker()

	Scan for online MQTT brokers then scan within network by checking online hosts then scanning for
open MQTT ports

	Returns

	No return

	
smartagro.utils.gpio_init()

	Function to initialize the GPIO pins, numbering system used and communication protocols.
GPIO.BCM IS THE DEFAULT

	
smartagro.utils.read_analogue(channel, spi_device=0, baud=1350000)

	Reads an analogue signal from the connected SPI ADC device and returns channel reading.

	Parameters

	
	channel (int) – ADC channel where sensor is connected.

	spi_device (int) – Either 0 or 1 as there are only 2 spi ports

	baud (int) – the bit rate, measured in bit/s clock rate used for device

	Returns

	Raw 1024 bit ADC output data.

	
smartagro.utils.scan_network()

	Ger the IP address other than the loopback IP that the device has been allocated by DHCP
Scan subnet /24 of IP address to check for LAN brokers’ availability.

	Returns

	list of online devices responding to ICMP echo request using ping.

	
smartagro.utils.switch_actuator(gpio_pin, state)

	Function to switch actuator ON or OFF

	Parameters

	
	gpio_pin (int) – The pin the fan relay (motor in demo) is connected to.

	state (boolean) – Boolean indicating whether fan is on or off.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/chris-kck/smartagro/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

SmartAgro could always use more documentation, whether as part of the
official SmartAgro docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/chris-kck/smartagro/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up smartagro for local development.

	Fork the smartagro repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/smartagro.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv smartagro
$ cd smartagro/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 smartagro tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/chris-kck/smartagro/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_smartagro

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Kudzai Chris Kateera <kckateera@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2020-09-03)

	First pre-release on PyPI.

0.1.1 (2020-10-12)

	Second pre-release on PyPI. Added modules

0.2.0 (2020-10-26)

	First production release on PyPI. Fully Functional

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 smartagro	

 	
 	
 smartagro.utils	

Index

 A
 | C
 | D
 | F
 | G
 | O
 | R
 | S

A

 	
 	activate_actuator() (smartagro.smart.SmartAgro method)

C

 	
 	cleanup() (in module smartagro.utils)

 	
 	config_broker() (smartagro.smart.SmartAgro method)

D

 	
 	discover_i2c() (in module smartagro.utils)

F

 	
 	find_broker() (in module smartagro.utils)

G

 	
 	get_dht() (smartagro.smart.SmartAgro method)

 	
 	gpio_init() (in module smartagro.utils)

O

 	
 	on_connect() (smartagro.smart.SmartAgro static method)

 	
 	on_message() (smartagro.smart.SmartAgro static method)

R

 	
 	read_all() (smartagro.smart.SmartAgro method)

 	read_analogue() (in module smartagro.utils)

 	
 	read_sensor() (smartagro.smart.SmartAgro method)

 	remove_device() (smartagro.smart.SmartAgro method)

S

 	
 	scan_network() (in module smartagro.utils)

 	SmartAgro (class in smartagro.smart)

 	
 	smartagro.utils (module)

 	switch_actuator() (in module smartagro.utils)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to SmartAgro’s documentation!

 		
 SmartAgro

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Package Modules

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2020-09-03)

 		
 0.1.1 (2020-10-12)

 		
 0.2.0 (2020-10-26)

_static/file.png

_static/minus.png

_static/down.png

_static/smart.png
S\

_static/up-pressed.png

_static/plus.png

_static/up.png

